26 research outputs found

    Mining Discriminative Triplets of Patches for Fine-Grained Classification

    Full text link
    Fine-grained classification involves distinguishing between similar sub-categories based on subtle differences in highly localized regions; therefore, accurate localization of discriminative regions remains a major challenge. We describe a patch-based framework to address this problem. We introduce triplets of patches with geometric constraints to improve the accuracy of patch localization, and automatically mine discriminative geometrically-constrained triplets for classification. The resulting approach only requires object bounding boxes. Its effectiveness is demonstrated using four publicly available fine-grained datasets, on which it outperforms or achieves comparable performance to the state-of-the-art in classification

    Learning Rich Features for Image Manipulation Detection

    Full text link
    Image manipulation detection is different from traditional semantic object detection because it pays more attention to tampering artifacts than to image content, which suggests that richer features need to be learned. We propose a two-stream Faster R-CNN network and train it endto- end to detect the tampered regions given a manipulated image. One of the two streams is an RGB stream whose purpose is to extract features from the RGB image input to find tampering artifacts like strong contrast difference, unnatural tampered boundaries, and so on. The other is a noise stream that leverages the noise features extracted from a steganalysis rich model filter layer to discover the noise inconsistency between authentic and tampered regions. We then fuse features from the two streams through a bilinear pooling layer to further incorporate spatial co-occurrence of these two modalities. Experiments on four standard image manipulation datasets demonstrate that our two-stream framework outperforms each individual stream, and also achieves state-of-the-art performance compared to alternative methods with robustness to resizing and compression.Comment: CVPR 2018 Camera Read

    Learning to Detect Carried Objects with Minimal Supervision

    Get PDF
    We propose a learning-based method for detecting carried objects that generates candidate image regions from protrusion, color contrast and occlusion boundary cues, and uses a classifier to filter out the regions unlikely to be carried objects. The method achieves higher accuracy than state of the art, which can only detect protrusions from the human shape, and the discriminative model it builds for the silhouette context-based region features generalizes well. To reduce annotation effort, we investigate training the model in a Multiple Instance Learning framework where the only available supervision is "walk" and "carry" labels associated with intervals of human tracks, i.e., the spatial extent of carried objects is not annotated. We present an extension to the miSVM algorithm that uses knowledge of the fraction of positive instances in positive bags and that scales to training sets of hundreds of thousands of instances
    corecore